一、报告题目:Fully decoupled, linear, positivity-preserving and unconditionally stable scheme for the chemotaxis-Stokes equations
二、报告人:王坤副教授重庆大学
三、报告时间:2022年5月22日星期日10:30-11:30
四、报告地点:80602
五、摘要:In this article, we develop a fully decoupled, linear, positivity-preserving and unconditionally stable finite element scheme for solving the chemotaxis-Stokes equations, which describe the biological chemotaxis phenomenon in the fluid environment. To deal with the strong coupling of the problem, we first consider a fully decoupled and linear semi-discrete scheme, in which we only need to solve several linearized sub-problems at each time step for the velocity, pressure, oxygen concentration and cell density, respectively. Then, based on the linear finite element method for the spatial discretization, the flux-corrected transport algorithm is extended to the oxygen concentration and cell density sub-problems to preserve their positivity. Moreover, the unconditional stability and error estimate of the scheme is proved. Finally, we show a series of numerical examples to verify its efficiency.
六、报告人简介:王坤,2011年6月毕业于西安交大大学,获理学博士学位;攻读博士学位期间曾在加拿大Alberta大学访问学习一年。2011年6月至今在重庆大学数学与统计学院工作,现为该校副教授、硕士生研究生导师;同时为中国数学学会计算数学分会理事,美国数学评论评论员,中国工业与应用数学学会会员。在重庆大学工作期间,曾于2012年1月至2014年1月在加拿大Alberta大学从事博士后研究(加拿大PIMS基金资助)。主要从事偏微分方程数值解方面的研究,包括复杂流体力学方程、大波数散射方程的数值分析与模拟等。曾应邀多次访问香港理工大学、Alberta大学,中国科学院计算数学与科学工程计算研究所等国内外高校和研究机构。主持和参与国家自然科学基金、国家重大研究计划重点项目和重庆市自然科学基金多项,在SIAM Journal of Numerical Analysis, Journal of Computational Physics,Computer Methods in Applied Mechanics and Engineering,Computer Physics Communications,Communications in Computational Physics,Discrete and Continuous Dynamical Systems等国际杂志上发表SCI学术论文40余篇。