当前位置: 首页 >> 学院概况 >> 师资队伍 >> 正文

龙宪军

2018年09月12日 15:16  点击:[]

    龙宪军,男,博士,教授,硕士生导师,重庆市巴渝学者特聘教授,重庆市高等学校青年骨干教师资助计划获得者,重庆市“优化理论及应用”市级创新团队负责人,美国《数学评论》评论员,国家自然科学基金面上项目通讯评议专家,中国运筹学会决策科学分会理事,重庆市数学会常务理事,重庆市运筹学会副理事长,加拿大不列颠哥伦比亚大学访问学者。发表论文70余篇,被SCI收录47篇;主持国家级项目2项、省部级项目6项。

研究方向: 随机优化与风险管理、多目标规划理论及应用、金融数学与统计决策

主要讲授课程:运筹与优化、博弈论与信息经济学、微积分、线性代数、概率论与数理统计

主要科研成果:

 一、项目:

1、随机变分不等式问题的收敛性和误差界分析,重庆市基础与前沿研究计划一般项目, 2018.7.1-2021.6.30,经费10万,主持(cstc2018jcyjAX0119)

2、优化理论及应用,重庆高校创新团队建设计划,2016.7-2019.6, 经费30万,负责人 (CXTDX201601026)

3、复合优化问题的最优性条件和对偶理论及相关问题研究, 重庆市基础与前沿研究计划重点项目, 2015.12.16-2018.12.15,经费20万,主持(cstc2015jcyjB00001)

4、 非凸半无限规划理论若干新问题研究, 国家自然科学基金面上项目, 2015.1-2018.12,经费60万,主持 (11471059)

5、非凸半无限规划问题若干对偶和稳定性研究, 重庆市基础与前沿研究计划一般项目,2014.7-2017.6,经费5万,主持 (cstc2014jcyjA00037)

6、半无限向量优化理论及相关问题研究,重庆市高等学校青年骨干教师资助计划,2014.1-2015.12,经费6万,主持

7、半无限多目标规划最优条件及稳定性研究,重庆市教委科学技术研究项目,2014.1-2016.7,经费3万, 主持 (KJ1400618)

8、非凸集值优化问题的理论及应用研究, 国家自然科学基金青年基金, 2011.1-2013.12,经费17万,主持(11001287)

9、非凸非光滑多目标规划问题的理论研究及应用, 重庆市教委科学技术研究项目,2010.1-2011.12,经费2万,主持 (KJ100711)

10、 非凸向量优化和向量均衡问题的理论研究及其在经济中的应用, 重庆市自然科学基金一般项目,2010.8-2013.8,经费1.5万,主持(CSTC 2010BB9254)

二、获奖:

1、彭建文、龙宪军、陈哲,向量平衡问题及其在经济均衡问题中的应用,重庆市人民政府,重庆市科学技术奖自然科学奖,三等奖,2012.

三、第一作者论文:

[1] Long Xian-Jun, Xiao Yi-Bin, Huang Nan-Jing, Optimality Conditions of Approximate Solutions for Nonsmooth Semi-infinite Programming Problems, Journal of the Operations Research Society of China, 6, 289-299 (2018)

[2] Long Xian-Jun, Sun Xiang-Kai, Peng Zai-Yun, Approximate Optimality Conditions for Composite Convex Optimization Problems, Journal of the Operations Research Society of China, 5, 469-485(2017)

[3] Long Xian-Jun, Peng Zai-Yun, Sun Xiang-Kai and Li Xiao-Bing, Generic stability of the solution mapping for semi-infinite vector optimization problems in Banach spaces, Pacific Journal of Optimization, 13, 593-605(2017).

[4] Long, X.J., Peng, Z.Y., Wang, X.F., Characterizations of the solution set for nonconvex semi-infinite programming problems, Journal of Nonlinear and Convex Analysis, 17, 251-265 (2016)

[5] Long, X.J., Peng, Z.Y., Sun, X.K.,Levitin-Polyak well-posedness for generalized semi-infinite multiobjective programming problems, Journal of Inequalities and Applications, 2016:12(2016)

[6]Long, X.J., Peng, J.W., Peng, Z.Y., Scalarization and pointwise well-posedness for set optimization problems, Journal of Global Optimization, 62, 763-773 (2015)

[7] Long, X.J., Huang, Y.Q., Tang, L.P., Generic stability of the solution mapping for set-valued optimization problems, Journal of Inequalities and Applications, 2015:349(2015)

[8] Long, X.J., Peng, J.W., Li, X.B., Weak subdifferentials for set-valued mappings, Journal of Optimization Theory and Applications, 162, 1-12(2014)

 [9]Long, X.J., Huang, N.J., Optimality conditions for minimizing the difference of nonconvex vector-valued mappings, Optimization Letters, 8, 1861-1872(2014) 

 [10] Long, X.J., Huang, N.J., Optimality conditions for efficiency on nonsmooth multiobjective programming problems, Taiwanese Journal of Mathematics, 18, 687-699(2014).

[11]Long, X.J.,Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized univex functions, Journal of Systems Science and Complexity, 26, 1002-1018(2013).

[12]Long, X.J., Li, X.B., andZeng, J., Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems, Optimization Letters, 7, 1847–1856(2013).

[13]Long, X.J., Quan, J., Wen, D.J., Proper efficiency for set-valued optimization problems and vector variational-like inequalities, Bulletin of the Korean Mathematical Society,50, 777–786(2013).

[14]Long, X.J., Peng, J.W., Lagrangian duality for vector optimization problems with set-valued mappings, Taiwanese Journal of Mathematics, 17, 287-297(2013).

[15]Long, X.J., Peng, J.W., Generalized B-well-posedness for set optimization problems, Journal of Optimization Theory and Applications, 157, 612-623(2013).

[16]Long, X.J., Peng, J.W., Wong, M.M., Generalized radial epiderivatives and nonconvex set-valued optimization problems, Applicable Analysis, 91, 1891-1900(2012).

[17]Long, X.J., Peng, J.W., Wu, S.Y., Generalized vector variational-like inequalities and nonsmooth vector optimization problems, Optimization, 61, 1075-1086(2012).

[18]Long, X.J., Peng, J.W., Connectedness and compactness of weak efficient solutionsfor vector equilibrium problems, Bulletin of the Korean Mathematical Society, 48, 1225-1233(2011).

[19]Long, X.J., Huang, Y.Q., Peng, Z.Y., Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints, Optimization Letters, 5, 717-728(2011).

[20]Long, X.J., Optimality conditions and dualityfor nondifferentiable multiobjective fractional programming problems with (C,α,ρ,d)-convexity, Journal of Optimization Theory and Applications, 148, 197–208(2011).

[21]Long, X.J., Huang, N.J.,Lipschitz B-preinvex functions and nonsmooth multiobjective programming, Pacific Journal of Optimization, 7, 83-95(2011).

[22]Long, X.J., Huang, N.J., O’Regan, D., Farkas-type results for general composed convex optimization problems with inequality constraints, Mathematical Inequalities & Applications, 13, 135-143(2010).

[23]Long, X.J., Peng, Z.Y., Zeng, B., Remark on cone semistrictly preinvex functions, Optimization Letter, 3, 337-345(2009).

[24]Long, X.J., Huang, N.J., Metric characterizations ofalpha-well- posedness for symmetric quasi-equilibrium problems, Journal of Global Optimization, 45, 459-471(2009).

[25]Long, X.J., Huang, N.J., Teo, K.L., Existence and stability of solutions for generalized strong vector quasi-equilibrium problem, Mathematical and Computer Modelling, 47, 445-451(2008).

[26]Long, X.J., Huang, N.J., Liu, Z.B., Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs, Journal of Industrial and Management Optimization, 4, 287-298(2008).

[27]Long, X.J., Huang, N.J., Teo, K.L., Levitin-polyak well-posedness for equilibrium problems with functional constraints, Journal of Inequalities and Applications, 2008(2008), AD657329, 14 pages.

[28] Long, X.J., Peng, J.W., Semi-B-preinvex functions, Journal of Optimization Theory and Application, 131, 301-305(2006).

 

 

 

 

 

 

 

 

上一条:孙祥凯 下一条:蔺友江

关闭