黄河:湖北恩施人,德国多特蒙德工业大学统计学专业毕业, 理学博士, 重庆工商大学数学与统计学院讲师。 主要研究方向为机器学习在认知科学领域的序列数据上的应用。
教育经历:
1. 2020.02 - 2024.09 德国多特蒙德工业大学统计学专业, 获得博士学位
2. 2017.10 - 2019.12 德国多特蒙德工业大学统计学专业, 获得硕士学位
3. 2006.09 - 2010.06 华中科技大学统计学专业,获得学士学问
工作经历:
1. 2024.11 - 至今, 重庆工商大学讲师
2. 2010.07 - 2014. 09 南玻集团 统计与市场调查员
研究方向:
数据挖掘, 机器学习,深度学习,序列数据,轨迹数据
论文发表:
1. Huang, H. & Doebler, P. (2024年接收) Trajectory-based Handwriting Recognition via Spatiotemporal Convolution on Distance Matrix. This paper has been accepted by conference In 2024 7th International Conference on Artificial Intelligence and Pattern Recognition, which has been held from September 20th to 22nd in Xiamen, China.
2. Huang, H., Doebler, P., & Mertins, B. (2024). Short-time AOIs-based representative scanpath identification and scanpath aggregation. Behavior Research Methods, 1-16.DOI: https://doi.org/10.3758/s13428-023-02332-w
3. Buczak, P., Huang*, H., Forthmann, B., & Doebler, P. (2022). The Machines Take Over: A Comparison of Various Supervised Learning Approaches for Automated Scoring of Divergent Thinking Tasks. The Journal of Creative Behavior, 57(1), 17-36, DOI: https://doi.org/10.1002/jocb.559 [*:Buczak, P. 与 Huang, H. 为共同一作,作者顺序按姓氏首字母排列]
4. Huang, H., Pouls, M., Meyer, A., Pauly, M. (2020). Travel Time Prediction Using Tree-Based Ensembles. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_27
邮箱:huang.he@ctbu.edu.cn