当前位置: 首页 >> 正文

学术报告:Data-Driven Robust Chance Constrained Problems: A Mixture Model Approach

2020年12月10日 11:39  点击:[]

西安交通大学陈志平教授学术报告

 

一、报告题目:Data-Driven Robust Chance Constrained Problems: A Mixture Model Approach

窗体底端

二、报告人:陈志平教授 西安交通大学 数学与统计学院

三、报告时间:2020年12月12日(星期六)16:00

四、报告地点:数学与统计学院会议室80602

五、报告摘要:We discuss the mixture distribution based data-driven robust chance constrained problem. We construct a data-driven mixture distribution based uncertainty set from the perspective of simultaneously estimating higher order moments. Then, we derive a reformulation of the data-driven robust chance constrained problem. As the reformulation is not a convex programming problem, we propose new and tight convex approximations based on the piecewise linear approximation method. We establish the theoretical foundation for these approximations. Finally, numerical results show that the proposed approximations are practical and efficient.

六、主讲人介绍:

陈志平:剑桥大学博士后,西安交通大学数学与统计学院教授、博士生导师,西安交通大学西安数学与数学技术研究院常务副院长、国家天元数学西北中心副主任,中国运筹学会常务理事,中国运筹学会金融工程与金融风险管理分会副理事长,中国管理科学与工程学会金融计量与风险管理研究会常务理事。长期从事随机规划理论及其应用、分布式鲁棒优化、金融风险度量与投资分析等领域的研究,在SIAM Journal on OptimizationJournal of Optimization Theory and Applications, European Journal of Operational Research,Annals of Operations Research, Journal of Banking & Finance, Journal of Economic Dynamics and Control, Insurance: Mathematics and Economics, Economic Modelling, Quantitative Finance等运筹学、经济与金融期刊发表SCI(SSCI)检索论文60余篇。主持国家自然科学基金4项,其中所主持批准号为70971109的国家自然科学基金项目在结题项目绩效评估中被评为特优。现为OR Spectrum》编委,《Big Data and Information Analytics》编委、工程数学学报编委、编辑部主任。

上一条:学术报告:On copositiveness identification of partially symmetric rectangular tensors 下一条:学术报告:A Unified Convergence Analysis of a Second-Order Method of Multipliers for Nonlinear Conic Programming

关闭