当前位置: 首页 >> 正文

学术报告:On copositiveness identification of partially symmetric rectangular tensors

2020年12月10日 15:02  点击:[]

曲阜师范大学陈海滨副教授学术报告

一、报告题目:On copositiveness identification of partially symmetric

rectangular tensors

二、报告人:陈海滨副教授—曲阜师范大学 管理学院

三、报告时间:2020年1212日星期六下午14:00

四、报告地点:数学与统计学院会议室80602

五、报告摘要:In this report, we study the copositiveness of a partially symmetric rectangular tensor. Some new criteria for identifying copositive rectangular tensors are established via the representation of the multivariate form in barycentric coordinates. Based on this, we propose a numerical method for identifying the copositiveness of a partially symmetric rectangular tensor. However, the proposed method can only capture the strictly copositive tensors. To solve this, a semidefinite relaxation algorithm is established and the convergence of the proposed algorithm is given. Numerical examples show that we can always catch the copositivity of given partially symmetric tensors.  

六、报告人简介:陈海滨,副教授,硕士生导师,香港理工大学博士。美国Math. Review评论员。主持国家自然科学基金2项(面上1项、青年1项)、山东省自然科学基金1项;主持中国博士后基金特别资助1项、博士后基金二等资助1项。获2016年山东省科学技术成果奖二等奖。主要研究方向为:非线性最优化理论与算法,张量优化,张量谱理论。近五年,出版专著一部(Springer 出版社),在《IEEE Geoscience and Remote Sensing Letters》《J OptimTheory Appl》《ComputOptimAppl》《Optimization Methods and Sofware》等国际主流期刊发表论文40篇,其中ESI高被引论文4篇。

 

欢迎感兴趣的老师和同学参加!

上一条:学术报告:Discrete Approximation method for Distributionally Robust Optimization 下一条:学术报告:Data-Driven Robust Chance Constrained Problems: A Mixture Model Approach

关闭