李麟:西南大学基础数学专业毕业,获博士学位,重庆工商大学数学与统计学院教师。男,1982年3月生,重庆合川人,教授,历任四川理工学院讲师,重庆工商大学讲师、副教授、教授,主要研究方向为临界点理论及其应用。先后在国内外期刊上发表论文70余篇,作为负责人承担过国家自然科学基金、重庆市科委自然科学基金、重庆市教委自然科学基金等项目的研究,获得过萧丽玉教育发展基金科研突出奖、重庆工商大学第六届优秀科研成果奖三等奖、校级“教考分离”二等奖等奖项,参编2部著作等。
联系方式:linli@ctbu.edu.cn
教育经历:
1.2004.07 西南师范大学数学与应用数学,获理学学士学位
2.2011.07 西南大学基础数学,获理学硕士学位
3.2014.07 University of California, Irvine,联合培养博士研究生
4.2015.07 西南大学基础数学,获理学博士学位
5.2021.05 中南大学数学流动站,博士后研究
工作经历:
1.2004.07-2012.06 四川理工学院讲师
2.2015.07-2016.11 重庆工商大学讲师
3.2016.12-2021.11 重庆工商大学副教授
4.2021.12-至今 重庆工商大学教授
研究方向:
临界点理论及其应用
学术兼职:
美国数学会评论员、重庆市科委基金评审专家、教育部学位中心论文评审专家
负责或参加的研究项目:
1.2017.01-2019.12国家自然科学基金青年基金项目,三维空间中KGM方程和带BI理论的KG方程的可解性研究,19万元,主持;
2.2024.09-2027.08 重庆市自然科学基金面上项目,非线形Klein-Gordon-Maxwell方程孤立波解的研究,10万元,主持
3.2016.09-2019.08 重庆市科委基础科学与前沿技术研究专项项目,带Born-Infeld理论的Klein-Gordon方程可解性研究,2.5万元,主持
4.2016.07-2018.06 重庆市教委科学技术研究项目静电场下Klein-Gordon-Maxwell方程的孤波,3万元,主持
5.2020.01-2020.12中国博士后科学基金,非线性Klein-Gordon-Maxwell方程的可解性,8万元,主持
6.2020.01-2022.12重庆市教委科学技术研究项目,稳态Schrodinger-Bopp-Podolsky方程的变号解,4万元,主持
7.2015.01-2018.12国家自然科学基金面上项目,Hamilton系统和几类重要椭圆方程的研究,76万元,参加
8.2019.01-2022.12国家自然科学基金地区项目,几类格点动力系统的变分问题研究,38万元,参加
9.2024.01-2027.12国家自然科学基金地区项目,基尔霍夫型方程中的若干变分问题研究,27万元,参加
部分论文、著作、成果:
1.L. Li, C.-L. Tang(*), Existence of three solutions for (p, q)-biharmonic systems, Nonlinear Anal., 2010, 73: 796-805
2.P. Candito(*), L. Li, R. Livrea, Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the p-biharmonic, Nonlinear Anal., 2012, 75(17): 6360-6369
3.S.-J. Chen(*), L. Li, Multiple solutions for nonhomogeneous Klein--Gordon equation coupled with Born--Infeld theory on R^3, J. Math. Anal. Appl., 2013, 400: 517-524
4.L. Li(*), W.-W. Pan, A note on nonlinear fourth-order elliptic equations on R^N, J. Glob. Optim., 2013, 57(4): 1319-1325
5.S.-J. Chen, L. Li(*), Multiple solutions for nonhomogeneous Kirchhoff equation on R^N, Nonlinear Anal. Real World Appl., 2013, 14(3): 1477-1486
6.L. Li(*), S.-J. Chen, Existence and multiplicity of solutions for a class of p-Laplacian equations, Appl. Math. Lett., 2014, 27: 59-63
7.L. Li, C.-L. Tang(*), Infinitely many solutions for a nonlinear Klein–Gordon–Maxwell System, Nonlinear Anal., 2014, 110: 157–169
8.L. Li, C.-L. Tang(*), Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I, 2015, 353: 35–40
9.L. Li(*), J.-J. Sun, Existence and multiplicity of solutions for the Kirchhoff equations with asymptotically linear nonlinearities, Nonlinear Anal. Real World Appl., 2015, 26: 391-399
10.L. Li(*), M. Schechter, Existence solutions for second order Hamiltonian systems, Nonlinear Anal. Real World Appl., 2016, 27: 283-296
11.L. Li(*), X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 2016, 435: 955-967
12.L. Ding, L. Li(*), Y.-J. Meng, C.-L. Zhuang, Existence and asymptotic behaviour of ground state solutions for quasilinear Schrodinger-Poisson systems in R^3, Topol. Methods Nonlinear Anal., 2016, 47(1): 241-264
13.G. Chen(*), L. Li, J.-J. Sun, Multiple results of damped systems with general nonlinearities, Adv. Nonlinear Stud., 2016, 16(2): 345-353
14.L. Li, S.-Z. Song, Solutions of Nonlinear Differential Equations: Existence Results via the Variational Approach, Trends in Abstract and Applied Analysis, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. x+360 pp. ISBN: 978-981-3108-60-8
15.S.-J. Chen, L. Li(*), Infinitely many solutions for Klein-Gordon-Maxwell system with potentials vanishing at infinity, Z. Anal. Anwend., 2018, 37(1): 39-50.
16.L. Li, J.-J. Sun, S. Tersian, Infinitely many sign-changing solutions for the Brezis-Nirenberg problem involving the fractional Laplacian, Fract. Calc. Appl. Anal., 2017, 20(5):1146-1164.
17.L. Li, Q. Liu, X. Zhong, Global strong solutions to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, 2017, 30: 4062–4088.
18.J. Sun; L. Li(*); M. Cencelj; B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in R3, Nonlinear Anal., 2019, 186: 33-54.
19.L. Li, S. Tersian(*). Fractional problems with critical nonlinearities by a sublinear perturbation, Fract. Calc. Appl. Anal. 2020, 23(2): 484--503.
20.L. Li, P. Pucci(*), X. Tang Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent. Adv. Nonlinear Stud. 20 (2020), no. 3, 511–538.
21.S.-J. Chen, L. Li(*), Infinitely many large energy solutions for the Schrödinger-Poisson system with concave and convex nonlinearities. Appl. Math. Lett. 112 (2021), Paper No. 106789, 7 pp.
22.L. Li, J. Xu(*). Kirchhoff equations with indefinite potentials, Appl. Anal. , 2022, 101(17):6081–6089.
23.S. Chen, L. Li, V. D. Radulescu(*), X. Tang. Ground state solutions of the non-autonomous Schrodinger-Bopp-Podolsky system. Anal. Math. Phys., 12(1):Paper No. 17, 32, 2022.
24.C.-M. He, L. Li (*), S.-J. Chen, D. O’Regan. Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents. Anal. Math. Phys., 12(2):Paper No. 48, 17, 2022.
25.H. Tao, L. Li, V. D. Radulescu (*). Existence and concentration properties for the 1-biharmonic equation with lack of compactness. Bull. Sci. Math., 186:Paper No. 103275, 37, 2023.
26.H. Tao, L. Li (*), P. Winkert. Existence and concentration of solutions for a 1-biharmonic Choquard equation with steep potential well in RN. J. Geom. Anal., 33(9):Paper No. 276, 27, 2023.
27. H. Tao, L. Li (*), P. Winkert. Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations in RN. Forum Math., in press.